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A. Machine thermique a deux isobares (4/10 points)

On considére un gaz parfait, comprenant N moles d’une seule substance, qui subit le cycle thermo-
dynamique décrit sur la figure ci-dessous. Tous les processus sont supposés réversibles.

— Partant de I’état A, défini par sa pression et son volume (p2, V4), un piston comprime le gaz
par un processus adiabatique, qui ameéne le gaz a la pression p;.

— On s’arrange alors pour refroidir le gaz de fagon réversible en maintenant la pression constante
égale & p1 jusqu’a ce que le volume atteigne la valeur V.

— Le gaz est alors refroidi dans un processus isochore, provoquant une chute de la pression jusqu’a
la valeur po.

— Un processus d’expansion isobare & la pression po est alors imposé au gaz pour le ramener a
I’état initial A.
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Questions et réponses au verso !



. (0.5 point) Le cycle parcouru comme indiqué est-il du type cycle moteur ?

[0 Oui X Non. Justifier :

La puissance mécanique recue est donnée par Py = —pV. Le travail recu sur un cycle vaut
f Py dt = fcyde —pdV est positif pour le sens donné. Par conséquent, ce cycle recoit du travail,
c’est un cycle de machine thermique, pas un cycle moteur

. (0.5 point) Déterminer le volume Vp, les grandeurs suivantes étant supposées connues : Vy,
Ve, p1, p2, -

1/v
e 2)
p1

. (1.0 point) Calculer le changement d’entropie dans le processus BC'. On considére dorénavant
connues les grandeurs suivantes : V4, Vi, Vo, p1, p2, 7.

ASpc = (c+1)NRIn <VC>
VB

. (1.0 point) Calculer la chaleur fournie dans le processus DA.

Qpa = (c+1)p2(Va— Vo)

. (1.0 point) On suppose maintenant qu’au lieu d’utiliser un gaz parfait, on utilise un fluide
qui subit une transition de phase en allant de B a C. Les paramétres du cycle sont choisis de
maniére que le fluide soit un gaz qu’on peut considéré comme parfait entre A et B. Le processus
BC est une condensation isobare et isotherme ayant lieu & la température Tp. On suppose
qu'en C il y a seulement du liquide. On note Ly, la chaleur latente molaire de vaporisation
du fluide. Que vaut dans ce cas-ci le changement d’entropie du processus BC'. Les grandeurs
suivantes sont supposées connues : N, V4, Vg, Vo, p1, p2, 7.

N2RLy,

ASBo = p1VB
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B. Deux sous-systémes dans un bain thermique (3/10 points)

Un gaz de N molécules est enfermé dans un récipient rigide de volume V' dont les parois sont telles
qu’elles maintiennent un équilibre thermique avec un bain thermique de température T', en tout temps
dans les processus décrits dans le probléme. Le récipient est divisé en deux compartiments séparés
par une paroi imperméable, diatherme et mobile. Une force de frottement visqueux agit sur la paroi
quand elle se déplace. L’énergie cinétique et ’énergie interne de la paroi sont toujours négligeables.

bain thermique
V fixe

@ @

paroi
mobile diatherme

Le systéme thermodynamique considéré est le gaz séparé par la paroi en deux sous-systémes. Initiale-
ment, la paroi est relachée et le systéme tend vers 1’équilibre. On notera F' ’énergie libre du systéme,
U son énergie interne, S son entropie. Le déplacement de la paroi est supposé étre le seul mécanisme
provoquant une production interne d’entropie. On notera Ilg le taux de production d’entropie. Le
récipient étant rigide, son volume V' ne change pas et donc, aucun travail n’est opéré sur le gaz.

[’évolution de I’entropie du systéme est donnée par

. PQ
$=29.41
T Ths

On notera d@ un échange infinitésimal de chaleur échangée entre le systéme et le bain thermique.

Soit Vi le volume du sous-systéme 1. On rappelle ici que des considérations thermodynamiques fon-
damentales sur la stabilité locale d’un systéme impliquent :

O*F
2 >0

Questions et réponses au verso !



. (1.0 point) En partant des principes généraux de la thermodynamique, démontrer que dF =
0Q) — T'dS pour ce systéme baigné.

Par définition, F = U —TS. Alors dF = dU —TdS — SdT. Or dU = 6Q + dW. Le systéme est
rigide, alors dW = 0. De plus, par hypothése du systéme baigné, dT" = 0. Il reste pour dF' le
résultat annoncé.

. (0.5 point) Montrer que dF < 0.

Dans S = Ig+1lg, on pose Ig = Pg/T. On peut le faire car T" est défini. On a dS = 6Q /T +11g.
Avec le résultat en-dessus, on a dF = —TIlg. Comme Ilg > 0, dF < 0.

. (0.5 point) Pour un systéme simple de volume V' et de température 7', quelle grandeur phy-
sique est égale a %' Donner une justification.

Par définition F' = U — T'S. On calcule la différentielle, compte de tenu de Gibbs : dF =
dU —TdS — SdT = —SdT — pdV + pdN. Ainsi, F' est fonction de T, V et N et le deuxiéme
terme implique que p = —9F/0V.

. (0.5 point) Pour le systéme composé de deux sous-systémes, dont les volumes sont V; et
V5 respectivement, donner une expression de dF' en fonction des pressions p; et ps des sous-
systémes et du volume V.

A température fixe, on a
dF = dF + dFy = —p1dVi — padVa = (p2 — p1)dVi

. (0.5 point) Pour le systéme composé de deux sous-systémes, dont les volumes sont Vj et V3, et
les pressions p; et pa, démontrer que la condition locale de convexité de F' est satisfaite, compte
tenu de la relation §?F/0V2 = 92U/0V? et de la définition du coefficient de compressibilité
isotherme du gaz,
—1 0p
k= ——-=2>0
T vov =T
82F _ 8 8U1 8U2 _ 8p1 4 8]?2 o 8p1 8}92
ovE oV \ovy oV, ) oV avi OV OV,
Avec la définition de la compressibilité, valable pour chaque compartiment, on tire :
O*F

vz~ hT (Vi +V2) =krV >0
1
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C. Chauffage laser (3/10 points)

La surface d’'une couche mince d’un matériau A est illuminée par un laser. La couche mince est
déposée sur un substrat composé d’un matériau B. On va conduire une analyse restreinte a un
processus ayant lieu dans une direction spatiale, indiquée par I'axe cartésien Ox sur la figure. On
va donc considérer qu’on a & faire & une colonne indiquée sur la figure. Les cdtés de cette colonne
sont supposés thermiquement isolés. On désignera par L 4 ’épaisseur de la couche du matériau A et
par Lp celle du matériau B. La section de la colonne est carrée, de coté a. Son aire vaut donc a?.

L’absorption de la lumiére a la surface de la couche mince est un processus thermique de puissance
Py.

Fq
Ly A
I B
x
Lp
TO o To

La base de la colonne est maintenue & la température Ty. La température est supposée égale en tout
point d’une section de la colonne, dans un plan normal a I’axe de coordonnée Ox. On la note T'(z).
On désigne par jo(z) la densité de courant de chaleur & la position x. Les conductivités thermiques
des matériaux A et B sont k4 et kp respectivement, c’est-a-dire :

Jjo(x) = —kaVT(z) (Lp<x<Las+Lp)
Jjo(z) = —kpVT(x) (0 <z < Lp)

On suppose que les conductivités k4 et kg sont indépendantes de la température et que les matériaux
A et B obéissent a la loi de Dulong-Petit.

Questions et réponses au verso!



. (0.5 point) Démontrer que VT ne dépend pas de x a U'intérieur de chaque couche, quand la
colonne a atteint un état stationnaire. Utiliser ’équation de continuité Osu = —V - j,.

L’équation de continuité dans le régime stationnaire se réduit a V - 3, = 0. Or ici 3, = jg
parce qu’il n’y a pas de déplacement de matiére. Pour finir, avec les lois de Fourier, il reste
V2T = 0, ce qui veut dire que les gradients de températures sont indépendants de .

. (0.5 point) Déterminer la puissance thermique Pé entre I’extérieur et 'interface de la colonne,
c’est-a-dire, & la jonction entre les matériaux A et B.

Comme les parois de la colonne sont thermiquement isolées, Pé = 0 ce qui implique que le
courant de chaleur est le méme dans A et dans B.

. (0.5 point) Dans le monde de la technique, on parle parfois de résistance thermique. Par
analogie avec la loi d’Ohm, on écrit AT = Ry, Pg ou AT est la chute de température dans le
substrat B, AT = T(Lg) — T(0). Exprimer Ry, en fonction de kg, Lp et a?.

. (0.5 point) Déterminer la température au sommet de la colonne T4, = T(x = La + Lp),
quand la colonne a atteint un état stationnaire. Donner la réponse en fonction de Py, de Tp,
des conductivités thermiques et des dimensions de la colonne.

-1 —1
ky Lo Kp Lp
a? + a? >+TO

Tmaz:PQ<

. (1.0 point) On se demande combien de temps il faudrait au laser pour chauffer le matériau
A jusqu’a une valeur limite Tj;,, de la température, si la colonne B est un isolant thermique,
c’est-a-dire qu’on peut négliger la conduction thermique dans le matériau B, i.e.kg = 0. Ici, on
vous demande d’introduire la ou les grandeurs thermodynamiques caractéristiques du matériau
dont vous avez besoin pour obtenir le temps ;;,, pour atteindre cette température en partant
de I’état d’équilibre avant que le laser soit enclenché.

grandeur : chaleur spécifique a volume constant Cy (pour la couche de A)

- Cv (Thim — To)
m T
Pq



