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Nom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2

Prénom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
N◦ Sciper : l2 l2 l2 l2 l2 l2

A. Machine thermique à deux isobares (4/10 points)

On considère un gaz parfait, comprenant N moles d’une seule substance, qui subit le cycle thermo-
dynamique décrit sur la figure ci-dessous. Tous les processus sont supposés réversibles.

— Partant de l’état A, défini par sa pression et son volume (p2, VA), un piston comprime le gaz
par un processus adiabatique, qui amène le gaz à la pression p1.

— On s’arrange alors pour refroidir le gaz de façon réversible en maintenant la pression constante
égale à p1 jusqu’à ce que le volume atteigne la valeur VC .

— Le gaz est alors refroidi dans un processus isochore, provoquant une chute de la pression jusqu’à
la valeur p2.

— Un processus d’expansion isobare à la pression p2 est alors imposé au gaz pour le ramener à
l’état initial A.
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Questions et réponses au verso !



1. (0.5 point) Le cycle parcouru comme indiqué est-il du type cycle moteur ?
� Oui X Non. Justifier :
La puissance mécanique reçue est donnée par PW = −pV̇ . Le travail reçu sur un cycle vaut∫
PWdt =

∫
cycle−pdV est positif pour le sens donné. Par conséquent, ce cycle reçoit du travail,

c’est un cycle de machine thermique, pas un cycle moteur

2. (0.5 point) Déterminer le volume VB, les grandeurs suivantes étant supposées connues : VA,
VC , p1, p2, γ.

VB = VA

(
p2
p1

)1/γ

3. (1.0 point) Calculer le changement d’entropie dans le processus BC. On considère dorénavant
connues les grandeurs suivantes : VA, VB, VC , p1, p2, γ.

∆SBC = (c+ 1)NR ln

(
VC
VB

)
4. (1.0 point) Calculer la chaleur fournie dans le processus DA.

QDA = (c+ 1)p2(VA − VC)

5. (1.0 point) On suppose maintenant qu’au lieu d’utiliser un gaz parfait, on utilise un fluide
qui subit une transition de phase en allant de B à C. Les paramètres du cycle sont choisis de
manière que le fluide soit un gaz qu’on peut considéré comme parfait entre A et B. Le processus
BC est une condensation isobare et isotherme ayant lieu à la température TB. On suppose
qu’en C il y a seulement du liquide. On note L`g la chaleur latente molaire de vaporisation
du fluide. Que vaut dans ce cas-ci le changement d’entropie du processus BC. Les grandeurs
suivantes sont supposées connues : N , VA, VB, VC , p1, p2, γ.

∆SBC = −
N2RL`g
p1VB
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B. Deux sous-systèmes dans un bain thermique (3/10 points)

Un gaz de N molécules est enfermé dans un récipient rigide de volume V dont les parois sont telles
qu’elles maintiennent un équilibre thermique avec un bain thermique de température T , en tout temps
dans les processus décrits dans le problème. Le récipient est divisé en deux compartiments séparés
par une paroi imperméable, diatherme et mobile. Une force de frottement visqueux agit sur la paroi
quand elle se déplace. L’énergie cinétique et l’énergie interne de la paroi sont toujours négligeables.
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Le système thermodynamique considéré est le gaz séparé par la paroi en deux sous-systèmes. Initiale-
ment, la paroi est relâchée et le système tend vers l’équilibre. On notera F l’énergie libre du système,
U son énergie interne, S son entropie. Le déplacement de la paroi est supposé être le seul mécanisme
provoquant une production interne d’entropie. On notera ΠS le taux de production d’entropie. Le
récipient étant rigide, son volume V ne change pas et donc, aucun travail n’est opéré sur le gaz.

L’évolution de l’entropie du système est donnée par

Ṡ =
PQ
T

+ ΠS

On notera δQ un échange infinitésimal de chaleur échangée entre le système et le bain thermique.

Soit V1 le volume du sous-système 1. On rappelle ici que des considérations thermodynamiques fon-
damentales sur la stabilité locale d’un système impliquent :

∂2F

∂V 2
1

≥ 0

Questions et réponses au verso !



1. (1.0 point) En partant des principes généraux de la thermodynamique, démontrer que dF =
δQ− TdS pour ce système baigné.
Par définition, F = U −TS. Alors dF = dU −TdS−SdT . Or dU = δQ+ δW . Le système est
rigide, alors δW = 0. De plus, par hypothèse du système baigné, dT = 0. Il reste pour dF le
résultat annoncé.

2. (0.5 point) Montrer que dF ≤ 0.
Dans Ṡ = IS+ΠS , on pose IS = PQ/T . On peut le faire car T est défini. On a dS = δQ/T+ΠS .
Avec le résultat en-dessus, on a dF = −TΠS . Comme ΠS ≥ 0, dF ≤ 0.

3. (0.5 point) Pour un système simple de volume V et de température T , quelle grandeur phy-
sique est égale à −∂F

∂V . Donner une justification.
Par définition F = U − TS. On calcule la différentielle, compte de tenu de Gibbs : dF =
dU − TdS − SdT = −SdT − pdV + µdN . Ainsi, F est fonction de T , V et N et le deuxième
terme implique que p = −∂F/∂V .

4. (0.5 point) Pour le système composé de deux sous-systèmes, dont les volumes sont V1 et
V2 respectivement, donner une expression de dF en fonction des pressions p1 et p2 des sous-
systèmes et du volume V1.
A température fixe, on a

dF = dF1 + dF2 = −p1dV1 − p2dV2 = (p2 − p1)dV1

5. (0.5 point) Pour le système composé de deux sous-systèmes, dont les volumes sont V1 et V2, et
les pressions p1 et p2, démontrer que la condition locale de convexité de F est satisfaite, compte
tenu de la relation ∂2F/∂V 2

1 = ∂2U/∂V 2
1 et de la définition du coefficient de compressibilité

isotherme du gaz,

κT =
−1

V

∂p

∂V
≥ 0

On a
∂2F

∂V 2
1

=
∂

∂V1

(
∂U1

∂V1
− ∂U2

∂V2

)
= −∂p1

∂V1
+
∂p2
∂V1

= −∂p1
∂V1
− ∂p2
∂V2

Avec la définition de la compressibilité, valable pour chaque compartiment, on tire :

∂2F

∂V 2
1

= κT (V1 + V2) = κTV ≥ 0
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C. Chauffage laser (3/10 points)

La surface d’une couche mince d’un matériau A est illuminée par un laser. La couche mince est
déposée sur un substrat composé d’un matériau B. On va conduire une analyse restreinte à un
processus ayant lieu dans une direction spatiale, indiquée par l’axe cartésien Ox sur la figure. On
va donc considérer qu’on a à faire à une colonne indiquée sur la figure. Les côtés de cette colonne
sont supposés thermiquement isolés. On désignera par LA l’épaisseur de la couche du matériau A et
par LB celle du matériau B. La section de la colonne est carrée, de côté a. Son aire vaut donc a2.
L’absorption de la lumière à la surface de la couche mince est un processus thermique de puissance
PQ.

LA

LB

B

A

T0T0

PQ

O

x

La base de la colonne est maintenue à la température T0. La température est supposée égale en tout
point d’une section de la colonne, dans un plan normal à l’axe de coordonnée Ox. On la note T (x).
On désigne par jQ(x) la densité de courant de chaleur à la position x. Les conductivités thermiques
des matériaux A et B sont κA et κB respectivement, c’est-à-dire :

jQ(x) = −κA∇T (x) (LB < x < LA + LB)

jQ(x) = −κB∇T (x) (0 < x < LB)

On suppose que les conductivités κA et κB sont indépendantes de la température et que les matériaux
A et B obéissent à la loi de Dulong-Petit.

Questions et réponses au verso !



1. (0.5 point) Démontrer que ∇T ne dépend pas de x à l’intérieur de chaque couche, quand la
colonne a atteint un état stationnaire. Utiliser l’équation de continuité ∂tu = −∇ · ju.

L’équation de continuité dans le régime stationnaire se réduit à ∇ · ju = 0. Or ici ju = jQ
parce qu’il n’y a pas de déplacement de matière. Pour finir, avec les lois de Fourier, il reste
∇2T = 0, ce qui veut dire que les gradients de températures sont indépendants de x.

2. (0.5 point) Déterminer la puissance thermique P IQ entre l’extérieur et l’interface de la colonne,
c’est-à-dire, à la jonction entre les matériaux A et B.

Comme les parois de la colonne sont thermiquement isolées, P IQ = 0 ce qui implique que le
courant de chaleur est le même dans A et dans B.

3. (0.5 point) Dans le monde de la technique, on parle parfois de résistance thermique. Par
analogie avec la loi d’Ohm, on écrit ∆T = RthPQ où ∆T est la chute de température dans le
substrat B, ∆T = T (LB)− T (0). Exprimer Rth en fonction de κB, LB et a2.

Rth =
κ−1
B LB
a2

4. (0.5 point) Déterminer la température au sommet de la colonne Tmax = T (x = LA + LB),
quand la colonne a atteint un état stationnaire. Donner la réponse en fonction de PQ, de T0,
des conductivités thermiques et des dimensions de la colonne.

Tmax = PQ

(
κ−1
A LA
a2

+
κ−1
B LB
a2

)
+ T0

5. (1.0 point) On se demande combien de temps il faudrait au laser pour chauffer le matériau
A jusqu’à une valeur limite Tlim de la température, si la colonne B est un isolant thermique,
c’est-à-dire qu’on peut négliger la conduction thermique dans le matériau B, i.e.κB = 0. Ici, on
vous demande d’introduire la ou les grandeurs thermodynamiques caractéristiques du matériau
dont vous avez besoin pour obtenir le temps tlim pour atteindre cette température en partant
de l’état d’équilibre avant que le laser soit enclenché.

grandeur : chaleur spécifique à volume constant CV (pour la couche de A)

tlim =
CV (Tlim − T0)

PQ


